
Exercise - 03
Edge Detection and Debouncing 

Andreas Habegger | Adrian Steiner 
BTS3230 | Version 1.0.0 of 17.03.2025 

Please be aware that the content is subject to change at any time. For the latest version, please check the website. Ex-03: Edge Detection and Debouncing

In this exercise, you will learn about the side effects of electromechanical components and how to deal

with them in software. You will also optimize your solution from the previous exercises and implement

a simple latch for the joystick center button.

Electromechanical components

Debouncing

Latching an input (joystick center button)

Understand the electromechanical side effects

Understand a sequential logic

Apply a digital debouncing filter

Polling-based button event detector

Bern University
of Applied Sciences

Objectives

▸ 

▸ 

▸ 

Outcomes

▸ 

▸ 

▸ 

▸ 



Description

Your first LED application has sampled the input state of a “GPIO” pin connected to the USER button

“B1” (low active) and set the inverse value on another “GPIO” pin connected to the LED “LD2” (high

active). This simple task was repeated in a super loop after initialization. However, you may have

updated the output pin regardless of whether the button state changed or not. Since this operation is

only needed on a change, a lot of unnecessary operations were performed by the CPU. Now the output

“GPIO” connected to the RGB LED should only be set or reset if the input connected to the button

changes.

Only the Nucleo-64 board and mbed Application Shield are used in this exercise, but the

temperature logger board has no effect on this exercise and can remain connected.

Tasks

Write a simple program to detect a “rising edge” event on the joystick center button and toggle a

channel of the RGB LED. Wait, do you know what an “edge” actually is?

An edge describes a digital signal going from one steady state or level to another. In software

we can call such a transition an event of a signal.

Rising Edge Event ER

Transition from a low state (likely GND) to

a high state (likely VDD)

Falling Edge Event EF

Transition from a high state (likely VDD) to

a low state (likely GND)

Implementation

Your first implementation is a pure combinatorial logic, so the output follows the value (state) of the

current input. A next evolution of this program should implement a behavior that does a state

transaction only on an edge (push and release sequence). So it behaves like a switch instead of a

pushbutton. Each push of the button should change the state, toggling the output pin (turning the LED

on/off). To implement such a behavior, “sequential logic” is needed. Sequential logic differs from

combinatorial logic in that it depends on both the current and previous state(s).

Note

Hint

▸ 

▸ 
GND

VDD

t

U(t)

L L L

H H

EFER

Exercise - 03 Edge Detection and Debouncing

2

https://mikrocontroller.ti.bfh.ch/_images/risingFallingEdge.svg
https://mikrocontroller.ti.bfh.ch/_images/risingFallingEdge.svg


Configure the joystick center button pin as input and an RBG LED color as output.

Compare the current and the previous sampled input value in the program. Toggle the

LED state only on a rising edge event.

Press and release the joystick center button at least 20 times. (Repeat the sequence

pressing both fast and slow.) It is less stable than the Nucleo-64’s blue user button. Why

is this?

Have you noticed any unusual behavior or side effects?

If so, what might be the cause?

Measure with the saleae logic analyzer the voltage flow of the switch center

button in analog and digital with the fastest sample rate. Can you detect/measure

this problem with logic analyzer?

Debouncing

While testing your implementation, you may have encountered some unexpected behavior. Pressing the

button once may have toggled the LED twice or more. This is a side effect of the button. Because the

button is a mechanical device, it tends to oscillate when it changes state.

Exercise

1. 

2. 

3. 

Question

a. 

b. 

c. 

Exercise - 03 Edge Detection and Debouncing

3



An example of an input signal sampling in a GPIO port.

However, the duration of the oscillation is usually quite short. A simple solution to this problem would

be to accept a new input level only after a certain period of time. Thus, only if N samples after a

transition have the same value, the edge is adopted. Such an implementation, which is a kind of digital

filter, is called software debouncing. It is also possible to have a hardware debouncing circuit. See the 

NULCEO-64 MB1136 schematic for an example of a hardware debouncing circuit (USER button B1). For

low-cost electronic designs, hardware debouncing may not be an option, so software debouncing

solves the problem of side effects due to mechanical bouncing.

Hint

Exercise - 03 Edge Detection and Debouncing

4

https://mikrocontroller.ti.bfh.ch/_images/debouncing.svg
https://mikrocontroller.ti.bfh.ch/_images/debouncing.svg
https://mikrocontroller.ti.bfh.ch/schematics/nucleoSchematic.html
https://mikrocontroller.ti.bfh.ch/schematics/nucleoSchematic.html


An example of software debouncing after the

input signal has been sampled.

Implement a software debounce functionality on the joystick center button.

Test your implementation with different values of AR (auto reload). What is the effect of

this change?

For more information about the bouncing effect, read the article Button Debouncing.

Example Software Debouncing

if (sample != currentState){
++counter;

} else {
counter = 0;

}

if (counter == AR){
counter = 0;
currentState != currentState;

}

if (currentState != formerState){
if (currentState) {

risingEdgeCallback();
} else {

fallingEdgeCallback();
}

}

formerState = currentState;

Exercise

4. 

5. 

See also

Exercise - 03 Edge Detection and Debouncing

5

https://mikrocontroller.ti.bfh.ch/_images/counterDebouncing.svg
https://mikrocontroller.ti.bfh.ch/_images/counterDebouncing.svg
https://www.eejournal.com/article/ultimate-guide-to-switch-debounce-part-1
https://www.eejournal.com/article/ultimate-guide-to-switch-debounce-part-1

	Exercise - 03
	Ex-03: Edge Detection and Debouncing
	Description
	Tasks
	Implementation
	Debouncing



