
Exercise - 09
Universal Synchronous and Asynchronous Receiver-Transmitter

Andreas Habegger | Adrian Steiner
BTS3230 | Version 1.0.0 of 17.03.2025

Please be aware that the content is subject to change at any time. For the latest version, please check the website. Ex-09: Universal Synchronous and Asynchronous
Receiver-Transmitter

In this exercise, you will implement communication via U(S)ART (Universal (Synchronous) and

Asynchronous Receiver-Transmitter). The nucleo board acts as a UART peripheral, and your computer

acts as the UART master (virtual serial interface over ST-Link). By sending the characters r, g and b to

the nucleo board, you can control the color of the RGB LED.

U(S)ART - Universal (Synchronous) and Asynchronous Receiver-Transmitter

Receive messages from computer

Sending messages to the computer

Use custom communication protocol

Configure UART with desired baud rate

Receive messages from your computer

Send an echo from the MCU back to your computer

Implement your own message protocol to interpret commands

Control the LED with your computer

Bern University
of Applied Sciences

Objectives

▸

▸

▸

▸

Outcomes

▸

▸

▸

▸

▸

Description

UART is a common standard to interface another device from a computer. Since a computer nowadays

does not have a direct UART interface, ST-Link over USB is used as a Virtual COM Port. In this case,

communication between the STM32F446re and the ST-Link is established via UART. The ST-Link itself

forwards the UART over USB as a virtual COM port. To control the LED, only a unidirectional

communication from the computer to the nucleo board would be needed. To check that the hole

communication is working, the bi-directional communication is used to send an echo back to the

sender device. The nucleo board will poll the UART peripheral connected to the ST-Link virtual COM

port for new messages and immediately send back the same message. A valid message triggers an

action in your MCU firmware. Valid message symbols are the characters r, R, g, G and b, B for toggling

the corresponding color channel of the RGB LED.

Tasks

Terminal

You will need a serial terminal emulator to send a message via UART from your computer to the nucleo

board.

This is not the same as a command terminal. However, you can use commands on a

command terminal to receive and send data over the UART, but it is much more convenient

for beginners to use a special program to do this.

There are several programs available to help with this. However, we recommend the Visual Studio

extension VS-Code Serial Monitor or the standalone program HTerm. Serial Monitor can be installed in

the vs code explorer (open with ⌃ Ctrl + P) with:

One standalone tool mentioned for Windows and GNU/Linux is HTerm. Terminal-based emulators for

GNU/Linux can also be used like screen, minicom, or putty. Feel free to use whichever you like.

UART

For this exercise, we will use USART2 for UART communication. Therefore, initialize USART2 to receive

messages at a baud rate of . USART2 is used because the Rx and Tx pins of this peripheral are

connected to the ST-Link UART Rx and Tx interface. The initialization is described in detail in the

reference manual.

Note

ext install ms-vscode.vscode-serial-monitor

9600
Bd9600\,
\text{Bd}

9600Bd

Exercise - 09 Universal Synchronous and Asynchronous Receiver-Transmitter

2

https://marketplace.visualstudio.com/items?itemName=ms-vscode.vscode-serial-monitor
https://www.der-hammer.info/pages/terminal.html
https://www.der-hammer.info/pages/terminal.html
https://www.der-hammer.info/pages/terminal.html
https://www.der-hammer.info/pages/terminal.html
https://linuxize.com/post/how-to-use-linux-screen/
https://wiki.emacinc.com/wiki/Getting_Started_With_Minicom
https://wiki.ubuntuusers.de/PuTTY/

Refer to section 25.4.2 from RM0390

Within the superloop, poll the RX register of USART2 for new characters. If a message is received,

immediately return it to the sender as an echo. In addition, if a valid command is received, toggle the

associated LED. Any other invalid message must be ignored.

UART commands for the RGB LED control:

r | R – Switches the red color channel

g | G – Switches the green color channel

b | B – Switches the blue color channel

USART2 Configuration:

Configure alternate function for U(S)ART pins. Please refer to the schematic and the DS10693 table

11.

Set the Baud Rate: .

Frame Properties: 8-N-1

LED

Initialize and use the LED as previous exercises. If you receive a correct message, the corresponding

LED will be toggled. Use the techniques you have learnt previously.

Implementation

Your implementation is based on three steps. At the end, there are additional options to extend your

implementation.

Initialise the LED as you have done many times before.

Implement a useful function to toggle the LED.

Next, implement the UART peripheral to read the messages with polling in the superloop and return

the message as an echo to the sender.

See also

Note

▸

▸

▸

▸

▸ 9600
Bd9600\,
\text{Bd}

9600Bd

▸

LED

1.

2.

Exercise - 09 Universal Synchronous and Asynchronous Receiver-Transmitter

3

https://mikrocontroller.ti.bfh.ch/datasheets/nucleoF446re/rm0390ReferenceManual.html?Page=800
https://mikrocontroller.ti.bfh.ch/datasheets/nucleoF446re/datasheetSTM32F446.html?Page=57
https://mikrocontroller.ti.bfh.ch/datasheets/nucleoF446re/datasheetSTM32F446.html?Page=57
https://mikrocontroller.ti.bfh.ch/datasheets/nucleoF446re/datasheetSTM32F446.html?Page=57
https://mikrocontroller.ti.bfh.ch/datasheets/nucleoF446re/datasheetSTM32F446.html?Page=57

Configure the used communication GPIOs with the correct AF from the DS10693 table 11.

Initialise UART with the configuration defined in the UART section.

Implement a blocking one byte USART read function

USART2 echo

3.

4.

Initialisation UART

void usart_init(USART_TypeDef *uartHandler) {
// Disable USART
CLEAR_BIT(uartHandler->CR1, USART_CR1_UE);
// Set data length to 8
CLEAR_BIT(uartHandler->CR1, USART_CR1_M);
// Select 1 stop b i t
CLEAR_BIT(uartHandler->CR2, USART_CR2_STOP_0);
CLEAR_BIT(uartHandler->CR2, USART_CR2_STOP_1);
// Set parity control to no parity
CLEAR_BIT(uartHandler->CR1, USART_CR1_PCE);
// Set oversampling to 16
CLEAR_BIT(uartHandler->CR1, USART_CR1_OVER8);
// Set Baud Rate 115200 on a 16 MHz system
// WRITE_REG(uartHandler− > BRR, 0x8B);
// Set Baud Rate 115200 on a 8 MHz system
// WRITE_REG(uartHandler− > BRR, 0x45);
// Set Baud Rate 9600 on a 16MHz system
// WRITE_REG(uartHandler->BRR, 0x683);
// Set Baud Rate 9600 on a 8MHz system
// WRITE_REG(uartHandler− > BRR, 0x683);
// Enable transmission and receiving
SET_BIT(uartHandler->CR1, (USART_CR1_TE | USART_CR1_RE));
// Enable USART
SET_BIT(uartHandler->CR1, USART_CR1_UE);

}

5.

Example blocking uart read function

void usart_blockingRead(USART_TypeDef *uartHandler, uint8_t *buffer) {
if (NULL == uartHandler || NULL == buffer) {

return;
}

// Wait until new data received in the DR
while (!(READ_BIT(uartHandler->SR, USART_SR_RXNE))) {

asm("NOP");
}
*buffer = (uint8_t)READ_REG(uartHandler->DR);

}

Exercise - 09 Universal Synchronous and Asynchronous Receiver-Transmitter

4

https://mikrocontroller.ti.bfh.ch/datasheets/nucleoF446re/datasheetSTM32F446.html?Page=57
https://mikrocontroller.ti.bfh.ch/datasheets/nucleoF446re/datasheetSTM32F446.html?Page=57

Implement a blocking UART write function

Implement an echo device that receives a message and immediately returns it to the

sender.

Test your implementation by sending messages using your favourite serial terminal

emulator on your computer.

Remember to use the same USART settings as on the MCU and use the correct USB

port.

When you are satisfied that your USART communication is working, finish the exercise.

In order to recognise the desired commands, write a parser for the received message.

Messages that do not match the rules must be ignored.

Depending on the command, switch the corresponding LED.

6.

Example blocking uart write function

void usart_blockingWrite(USART_TypeDef *uartHandler,
uint8_t *buffer,
uint32_t bufferLength) {

if (NULL == uartHandler || NULL == buffer || 0 == bufferLength) {
return;

}

// Transmit multiple bytes
for (uint32_t idx = 0; idx < bufferLength; idx++) {

// Wait for the transfer from DR to tx shift register
while (!(READ_BIT(uartHandler->SR, USART_SR_TXE))) {

asm("NOP");
}

// Write out one byte.
WRITE_REG(uartHandler->DR, buffer[idx]);

}

// Wait for transmission completion
while (!(READ_BIT(uartHandler->SR, USART_SR_TC))) {

asm("NOP");
}

}

7.

8.

Hint

Finishing exercise

9.

10.

Exercise - 09 Universal Synchronous and Asynchronous Receiver-Transmitter

5

The current implementation is not very user-friendly. Just getting an echo is not helpful with

using your application from the computer. To improve it, add additional commands and

extend the protocol.

Add a help message in case of invalid messages or received letter h | H.

Add an additional command to get the current state of the LED.

Add to the message parser a new command with setting the state of an color. The state

will be defined after a colon (:) with the values 0 and 1. As an end token, to recognise a

full message, the character LF (newline ('\n')) is used.

With an end token, a complete message is defined as with UART an message can only

read byte per byte. Generally, end tokens are defined by the protocol with an

character like CR ('\r'), LF ('\n') or both together.

r\n | R\n - Toggles the red colour channel

g\n | G\n - Toggles the green colour channel

b\n | B\n - Toggles the blue colour channel

<COLOR>:<STATE>\n - Sets the colour to the desired state, e.g:

r:1\n - Turn ON the RED LED

B:0\n - Turn OFF the BLUE LED

(optional) Redesign of communication protocol

11.

12.

13.

Note

-

-

-

-

▸

▸

Exercise - 09 Universal Synchronous and Asynchronous Receiver-Transmitter

6

	Exercise - 09
	Ex-09: Universal Synchronous and Asynchronous Receiver-Transmitter
	Description
	Tasks
	Terminal
	UART
	LED

	Implementation

