
Lab - 02
Read external IC using SPI communication

Andreas Habegger | Adrian Steiner
BTS3230 | Version 1.0.0 of 17.03.2025

Please be aware that the content is subject to change at any time. For the latest version, please check the website. Lab-1.02: Read external IC using SPI communication

The Serial Peripheral Interface (SPI) is one of the most widely used interfaces between the MCU and

peripheral ICs such as the MAX 31855 Thermocouple Digital Converter or Operational Amplifier on the

temperature logger board. The aim of this lab is to initialise the SPI bus, read the internal temperature

from the MAX 31855 Thermocouple Digital Converter in a sample rate of and set the RGB LED

depending on the temperature.

Initialise SPI communication

Read data from the MAX31855 IC using SPI

Extracting temperature data

Correct handling of temperature data encoded with sign magnitudes

Understand SPI communication

Handling data with integer datatypes in different bit lengths

Interpretation of data in an integer value

Temperature display with RGB LED

Bern University
of Applied Sciences

1
Hz1\,
\text{Hz}

1Hz

Objectives

▸

▸

▸

▸

Outcomes

▸

▸

▸

▸

https://mikrocontroller.ti.bfh.ch/datasheets/temperatureLogger/max31855.html
https://mikrocontroller.ti.bfh.ch/datasheets/temperatureLogger/max31855.html
https://mikrocontroller.ti.bfh.ch/datasheets/temperatureLogger/ltc2360.html
https://mikrocontroller.ti.bfh.ch/datasheets/temperatureLogger/ltc2360.html
https://mikrocontroller.ti.bfh.ch/datasheets/temperatureLogger/max31855.html
https://mikrocontroller.ti.bfh.ch/datasheets/temperatureLogger/max31855.html

Description

Until now, external peripherals have been connected directly to the GPIO pins and used as simple

inputs and outputs. Your applications are based only on the logic in your MCU and some simple I/O

hardware such as the LED and joystick. In the real world, you will never encounter a situation like this.

Many special tasks are outsourced and not integrated into the MCU, such as the MAX31855, which

reads the thermocouple interface and calculates the effective temperature at the probe tip.

In addition to the thermocouple temperature, the MAX31855 also measures the current internal circuit

temperature. The aim of this lab is to obtain this internal temperature data and provide a feedback to

the user using the RGB LED with different colours. The colour scheme is based on the current received

temperature. The sample frequency is .

LED colour scheme according to temperature

Several communication systems have been developed in recent years to communicate with external

peripherals. As they all have different advantages, no general method has been developed for all

applications. Rather, they are used in different areas where their advantages are greater or the

disadvantages are less. In this exercise, the focus is on SPI, which is explained more in the followed

sections.

SPI bus

The SPI is a synchronous full-duplex serial communication interface that is widely used to exchange

data between a MCU and peripheral devices by using four wires. It was developed by Motorola in the

late 1970s. Due to the high speed full-duplex communication and simple implementation, several

integrated circuit companies began to use SPI as their interface.

1
Hz1\,
\text{Hz}

1Hz

Colorscheme

Blue Cyan Green Yellow Red

15°C 20°C 25°C 30°C

Lab - 02 Read external IC using SPI communication

2

https://mikrocontroller.ti.bfh.ch/_images/colorSchemeTemperature.svg
https://mikrocontroller.ti.bfh.ch/_images/colorSchemeTemperature.svg

Disadvantages:

Requires more wires than other

communication systems

No hardware to control the flow of

data

No acknowledgement between master

and slave (even the master does not

send data to any device without

noticing)

Only one master device available at a

time

Slowest device determines transfer

speed

Supports only short distance

communication compared to RS485

and CAN

Requires a slave select (SS) (also

called chip select (CS)) line for each

slave device

Advantages:

Supports full-duplex communication

at all times

Provides higher throughput than I2C

Interface hardware is very simple

(consists of a simple shift register)

Power consumption is lower

compared to I2C due to very simple

hardware circuitry

Slaves do not require a precision

oscillator as they use a clock from the

master device.

Only one master device is supported,

therefore no conflicts when initiating

a transfer

No addresses, START or STOP

symbols, therefore no protocol

overhead

SPI bus structure

The bus consists of one clock, two data and one select line per slave.

SCLK: Serial Clock

Serial clock to synchronise the data

transfer (in the range of MHz)

MOSI: Master Out Slave In

Transfer data from the master unit to

the selected slave device

MISO: Master In Slave Out

Transfer data from the selected slave

device to the master unit

SSn: Slave Select or Chip Select (CSn)

Control signal to select the receiving

slave on the bus. This is done by

pulling the signal low from the

master unit.

▸

▸

▸

▸

▸

▸

▸

▸

▸

▸

▸

▸

▸

▸

▸

▸

▸

▸

Lab - 02 Read external IC using SPI communication

3

A new individual SS line must be connected to the peripherals for each device.

Device connections

Single device

Single device connection (src: SPI Wikipedia)

Multi device

Multi device connection (src: SPI Wikipedia)

SPI
Master

SCLK
MOSI
MISO
SS

SPI
Slave

SCLK
MOSI
MISO
SS

SPI
Master

SCLK
MOSI
MISO

SS1
SS2
SS3

SPI
Slave

SCLK
MOSI
MISO
SS

SPI
Slave

SCLK
MOSI
MISO
SS

SPI
Slave

SCLK
MOSI
MISO
SS

Lab - 02 Read external IC using SPI communication

4

https://mikrocontroller.ti.bfh.ch/_images/SPI_single_slave.svg
https://mikrocontroller.ti.bfh.ch/_images/SPI_single_slave.svg
https://de.wikipedia.org/wiki/Serial_Peripheral_Interface
https://mikrocontroller.ti.bfh.ch/_images/SPI_three_slaves.svg
https://mikrocontroller.ti.bfh.ch/_images/SPI_three_slaves.svg
https://de.wikipedia.org/wiki/Serial_Peripheral_Interface

SPI modes

On a serial bus you have to decide on which edge of the clock to read the current state on the input

line or to shift the data to the output. The default state of the clock is also important. This depends on

whether it is set to high by default and starts with a falling edge or vice versa. This results in four

possible modes, which can be configured with two bits:

CPOL: Clock Polarity

Sets the default state of the clock SCK. 1 results in high, otherwise low.

CPHA: Clock Phase

Reads the data or shifts the output data on the first clock edge. A zero results in reading the input

data, a one results in shifting the output data.

▸

▸

SPI Mode Configurations

Mode CPOL CPHA Clk

idle

Description

0 0 0 low Data sampled on rising edge and shifted out

on the falling edge

1 0 1 low Data sampled on the falling edge and shifted

out on the rising edge

2 1 0 high Data sampled on the falling edge and shifted

out on the rising edge

3 1 1 high Data sampled on the rising edge and shifted

out on the falling edge

Lab - 02 Read external IC using SPI communication

5

SPI Modes Description (src: SPI Wikipedia)

Tasks

SPI

For peripherals that use GPIO pins, initialisation consists of two steps. The first is the initialisation of

the GPIO pins and the second is the initialisation of the peripheral itself.

As mentioned before, the SPI needs several pins to communicate between peripherals. Although only

the MAX31855 is used in this lab, all relevant SPI pins must be initialised, i.e. all chip select pins that

are used for the same SPI bus.

There are MCUs that don’t provide SPI peripheral. In such a situation, you can still realise SPI

by using GPIOs and implementing the interface using the bit banging technique. The current

situation with an included peripheral is by far the most favorable in terms of effort and

complexity of implementation.

Description SPI Modes

SCK CPOL=0
CPOL=1

SS

2 3 4 5 6 7 81

2 3 4 5 6 7 8 zz 1

Cycle #

MISO

MOSI 2 3 4 5 6 7 8 zz 1

CPHA=1

CPHA=0
1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8z z

1 2 3 4 5 6 7 8z

Cycle #

MISO

MOSI z

Note

Lab - 02 Read external IC using SPI communication

6

https://mikrocontroller.ti.bfh.ch/_images/SPI_timing_diagram2.svg
https://mikrocontroller.ti.bfh.ch/_images/SPI_timing_diagram2.svg
https://de.wikipedia.org/wiki/Serial_Peripheral_Interface
https://en.wikipedia.org/wiki/Bit_banging

Look at the Thermocouple Expansion Board schematic or PCB Description to identify the

SPI peripheral you are using.

Find all used GPIO pins connected with this SPI bus.

Why is it important to initialise and use ALL connected SPI pins, i.e. SS (CS) wires?

The used SPI peripheral is SPI2

Pins used for SPI2 external peripherals:

A device with a slave select (SS) or chip select (CS) is activated by a low on the SS line.

With this information, the designer must ensure that all slave select lines are set to

high.

The GPIO pin requires the alternate function mode for data and clock wiring. The chip select pins can

be used as normal general purpose outputs.

Question

a.

b.

c.

Solution

a.

b.

Used SPI Pins

Pin name MCU pin Description

SPI2_SCK PB13 SPI2 Clock wire

SPI2_MISO PB14 SPI2 Master In Slave Out

MAX_31855CS_I PA15 Chip select MAX31855 channel I

MAX_31855CS_II PA11 Chip select MAX31855 channel II

LTC2360_CONV_I PB7 Chip Select LTC2360 channel I

LTC2360_CONV_II PB12 Chip Select LTC2360 channel II

c.

Lab - 02 Read external IC using SPI communication

7

https://mikrocontroller.ti.bfh.ch/schematics/thermocoupleExpansionSchematic.html
https://mikrocontroller.ti.bfh.ch/schematics/thermocoupleExpansionSchematic.html
https://mikrocontroller.ti.bfh.ch/pcb/pinion.html
https://mikrocontroller.ti.bfh.ch/pcb/pinion.html

What is the alternate function for the clock and data pins? All the alternate functions for

the GPIO pins are described in the DS10693 table 11.

The fifth alternate function for both pins (see property 5) is used.

The SPI peripheral can be configured in the SPI Control Register 1 (SPI_CR1). To be able to complete the

configuration, further information are need about the SPI in the used slaves in order to match them.

Study the MAX 31855 Thermocouple Digital Converter to find out all the solutions.

In which mode does the SPI for the MAX31855 have to run? Have a look at the serial

interface diagrams in the MAX 31855 Thermocouple Digital Converter.

What is the maximum clock frequency of the MAX31855?

Is the LSB or MSB bit sent first?

What is the size of a data frame? Can this size be read with our MCU?

In the MAX 31855 Thermocouple Digital Converter in Figure 2 shows that the clock is

low by default and the data is read on a rising edge and shifted on the falling edge.

This results in mode 0.

In the same document on page 4 in the table Serial-Interface Timing Characteristics

is the Serial-Clock Frequency described with a max value of 5Mhz.

The MSB is sent as the first bit.

The data frame is 32 bit. On the SPI peripheral in our MCU only 16 bit can be read.

We have to read the frame twice for the complete data frame.

Conversation

The internal temperature must be extracted from the data frame. The 12 bit twos complement value

must be converted to an MCU readable value i.e. 16bit. The aim is to have a signed integer value. To

simplify the calculation, the fractional value is ignored for this laboratory.

Question

d.

Solution

d.

Question

e.

f.

g.

h.

Solution

e.

f.

g.

h.

Lab - 02 Read external IC using SPI communication

8

https://mikrocontroller.ti.bfh.ch/datasheets/nucleoF446re/datasheetSTM32F446.html?Page=57
https://mikrocontroller.ti.bfh.ch/datasheets/nucleoF446re/datasheetSTM32F446.html?Page=57
https://mikrocontroller.ti.bfh.ch/datasheets/nucleoF446re/rm0390ReferenceManual.html?Page=886
https://mikrocontroller.ti.bfh.ch/datasheets/temperatureLogger/max31855.html
https://mikrocontroller.ti.bfh.ch/datasheets/temperatureLogger/max31855.html
https://mikrocontroller.ti.bfh.ch/datasheets/temperatureLogger/max31855.html
https://mikrocontroller.ti.bfh.ch/datasheets/temperatureLogger/max31855.html
https://mikrocontroller.ti.bfh.ch/datasheets/temperatureLogger/max31855.html
https://mikrocontroller.ti.bfh.ch/datasheets/temperatureLogger/max31855.html
https://mikrocontroller.ti.bfh.ch/datasheets/temperatureLogger/max31855.html?Page=5
https://mikrocontroller.ti.bfh.ch/datasheets/temperatureLogger/max31855.html?Page=4

Analysis

If you are having problems getting data, an additional method of checking the SPI bus is to use the

saleae. This allows you to monitor your communication. The logic2 application also provides an SPI

analyser that displays the transmitted values on the SPI data wires. In case of errors, a wrong protocol

will be displayed and the recognising of the data will fail.

Correct SPI communication verified using the saleae logic analyzer.

For more information on how to use the analyser, please refer to the FAQ Saleae instructions

in the protocol analyzer section.

Implementation

The RGB LED is initialised as it has been several times before.

Initialise all channels of the RGB LED as general purpose outputs.

Write a function to set the desired colours.

After the LED configuration, the SPI bus is initialised. First the used GPIO pins are set to the correct

configuration.

Configure the SPI clock and data pins (MISO) as alternate function mode.

Configure the same pins as high speed pins (GPIOx_OSPEEDR).

Demo

See also

RGB-LED initialisation

1.

2.

SPI GPIO initialisation

3.

4.

Lab - 02 Read external IC using SPI communication

9

https://mikrocontroller.ti.bfh.ch/_images/logic2SPI.png
https://mikrocontroller.ti.bfh.ch/_images/logic2SPI.png
https://mikrocontroller.ti.bfh.ch/faq/saleae.html#protocol-analyzers
https://mikrocontroller.ti.bfh.ch/faq/saleae.html#protocol-analyzers

Set the correct alternate function in the corresponding register and pin.

The CMSIS GPIO_TypeDef has no member of AFRL and AFRH. CMSIS combines these

registers in an array of type uint32_t with size 2 called AFR. This results in AFR[0] =

AFRL and AFR[1] = AFRH.

Initialise all SS pins as general purpose output.

Set all SS pins to HIGH.

The next step is to configure the SPI. With the important setting data from the task section all relevant

data is known.

Initialise the used SPI peripheral with the needed configuration.

5.

Note

6.

7.

SPI2 initialisation

8.

SPI Init Function

void SPI_init(SPI_TypeDef *spiHandler) {
// Set SPI off
CLEAR_BIT(spiHandler->CR1, SPI_CR1_SPE);

// Set clock polarity and clock phase to zero
CLEAR_BIT(spiHandler->CR1, SPI_CR1_CPHA);
CLEAR_BIT(spiHandler->CR1, SPI_CR1_CPOL);

// Set master mode
SET_BIT(spiHandler->CR1, SPI_CR1_MSTR);

// Set baudrate of max 5Mhz: 16MHz / 32 = 0.5 MHz
MODIFY_REG(spiHandler->CR1, SPI_CR1_BR_Msk, 0b100 << SPI_CR1_BR_Pos);

// Set recieve only mode
SET_BIT(spiHandler->CR1, SPI_CR1_RXONLY);
CLEAR_BIT(spiHandler->CR1, SPI_CR1_BIDIMODE);
CLEAR_BIT(spiHandler->CR1, SPI_CR1_BIDIOE);

// Hardware CRC calculation disable
CLEAR_BIT(spiHandler->CR1, SPI_CR1_CRCEN);

// Set software slave management and internal slave select
SET_BIT(spiHandler->CR1, SPI_CR1_SSI);
SET_BIT(spiHandler->CR1, SPI_CR1_SSM);

// Set data frame format to 16 bit
SET_BIT(spiHandler->CR1, SPI_CR1_DFF);

Lab - 02 Read external IC using SPI communication

10

To read data with SPI, several steps are required to get the desired data. The sequence is very

important for SPI communication.

Set the SS pin to low

Enable the SPI bus (SPI_CR1_SPE bit).

Wait until the SPI_SR_RXNE bit is true.

Read out the data from the data register.

As the MAX31855 IC sends 4 bytes and the data register of the SPI peripheral only

contains 2 bytes, repeat the two previous steps a second time.

Disable the SPI bus (SPI_CR1_SPE bit).

Set the SS pin to high.

Finally, the chip’s current internal temperature must be extracted from the received data, converted to

MCU-readable form, and the RGB LED set accordingly.

Extract the internal temperature from the received data.

Convert the received value in a MCU readable value (i.e. int16_t) without the fraction

part.

Set the desired colour with the temperature.

To finish the laboratory, add a sample frequency with methods you have learnt before.

// disable ss output
CLEAR_BIT(spiHandler->CR2, SPI_CR2_SSOE);

// set spi motorola mode
CLEAR_BIT(spiHandler->CR2, SPI_CR2_FRF);

}

SPI reading

9.

10.

11.

12.

13.

14.

15.

Extract temperature

16.

17.

18.

Lab - 02 Read external IC using SPI communication

11

Sample the MAX31855 IC every . The system to get this frequency is up to you.

Discuss with your colleagues possible solutions.

Sample frequency

19. 1
Hz1\,
\text{Hz}

1Hz

Lab - 02 Read external IC using SPI communication

12

	Lab - 02
	Lab-1.02: Read external IC using SPI communication
	Description
	SPI bus
	SPI bus structure
	SPI modes

	Tasks
	SPI
	Conversation
	Analysis

	Implementation

